

The Development of Elsburgspruit Catchment Remediation Plan

By

Johan Barnard

Introduction

- CoE known for numerous waterbodies, wetland & river systems.
- CoE faces many challenges in managing and protecting these due to minimg, massive urbanisation and industrial polution.
- CoE recognizes it's responsibility to provide a healthy and safe environment as mandated by the following legislation:
 - Section 24 of the Constitution of South Africa 1996
 - Section 28(1) of National Environmental Management (Act No 104 of 1998)
 - Section 19 of National Water Act (Act 36 of 1998)
- CoE initiated several Catchment Master Plan studies to produce remediation interventions & related environmental authorisations.

Discussing Elsburgspruit & Blesbok Catchment Remediation Plans

FOR:

CITY OF EKURHULENI

BY:

NEWTOWN LANDSCAPE ARCHITECTS CONSORTIUM

The Sustainable Urban Drainage Systems (SUDS) is based on the understanding that land is a crucial component of the built environment and can be planned, designed, developed, and maintained to avoid, mitigate, and even reverse detrimental impacts.

'Sustainable Urban Drainage Systems (SUDS)' (Sometimes called 'low Impact Development', LID) can thus be defined as to mimic the pre-development situation both with regard to runoff quality, runoff quantity, amenity and biodiversity

Ian McHarg

Design with Nature (1969)

- Replace the polluted, bulldozed, machine dominated, dehumanized, explosion-threatened world that is even now disintegrating and disappearing.
- In presenting us with a <u>vision</u> of ecological design promise to revives the hope for a better city.
- "Without the <u>passion</u> and <u>courage</u> and <u>confident skill</u> of people like McHarg that hope might fade and disappear forever" -Lewis Mumford

Ian McHarg

"We need to recognize **nature** as "an **essential force** that **permeates** the **city**."

By embracing the presence of nature's processes within the city, we can create an ecological urbanism that <u>combines</u> human and natural systems for the betterment of both". (Spirn).

"The realization that **nature** is **ubiquitous**, a **whole** that **embraces the city**, has powerful implications for how the city is **built** and **maintained** and for the **health**, **safety**, **and welfare of every resident**" (Spirn).

Anne Whiston Spirn - The Granite Garden

E. McMahon, M. Benedict - Green Infrastructure

- Green Infrastructure : "Linking Landscapes and communities" and "A strategic approach to natural resource planning and conservation" (2006).
- Explains the need to implement sensible, sustainable land use plans in the <u>cities</u>, <u>towns</u>, <u>communities</u>, and <u>neighbourhoods</u> in which we live.

E. McMahon, M. Benedict - Green Infrastructure

Study area

Google Earth Image - 03/2019

Proposed Elsburgspruit Project Site

Figure 1: LOCALITY MAP - Elsburgspruit Remediation Project

June 2019

Approach

- The remediation plan was eniciated by conducting various specialist studies:
 - Present & Future Land use study
 - Aquatic & Biodiversity assessment
 - Hydrological assessment
 - Review of Floodline & drainage patterns.
- This data was reviewed from an Ecological, Engineering and Landscape architecture perspective
- Team developed a list of **potential remediation interventions**, which was a specific Client requirement
- To secure the future management and maintenance of the priority intervention, we aimed to couple them with **opportunities for parks and recreational developments** like educational centers, sport fields, conservation areas and urban agriculture.
- A Landscape Master plan was developed which formed the context for the Environmental and Water Use applications

Land Use Assessment

- Anthropogenic impacts have occurred over last 130 years
- Establishment & growth of gold mines and residue tailings and their continued impact the environment
- Current threats of Acid mine drainage (AMD) is severe and continued efforts from TCTA has reduced this threat
- Development and expansion of industrial areas around the mines.
- Growth of Residential areas with marginalized township expanding into buffer areas and floodline

Aquatic Assessment

- Sampling for biotic factors according to SASS5 at set sampling points along the system.
- Fish sampling
 - No fish in system
 - Water quality parameters tested within the Catchment:
 - Parts Per Million (PPM) and Conductivity (266 1909)
 - pH (7.3-8.4)
 - Total coliforms (0-100 000)
- Community is aware of state of pollution and advised specialist to stay out of water

	Abiotic factors														Composition			
	System condition									St	tr				Structure	e Substa	nce	
Intervention location no	structur climate (te	es an empe morp tion ons g at a catc		Biotic Species									ce to mou) (level 2/		ical ions and cont the From catc boundary tow stream the r om, dissolved su nks. increases. Thi	boundary towards the stream the mount of dissolved substances increases. This increase		
	conditions a		Present ecological score				Ecological integrity scor			Imp		Mean			is also visib source to i		-	
nter	n		where Mean of								۱p							
			all systems is D. A=+10,	Invertebrata		lthcyofauna	A=+10, - B=+8, C=+4, - D=0, E=-5, F=-10								1			
	Climate		B=+8, C=+4, D=0, E=-5, F=-10		brata					c	co			1			rocesses	
1	0							Magnitude	e Scale					se of /ention	Contribution to			-5,5
2	0							Magintude	e Scale		D		Ilation		catchment	Impact		-0,7
3	0			SASS ASPT	ASPT	Fish	510									assessment sub		-0,7
4	0		PES	rating	ng	population rating	EIS					-6,8				average		-1,6
5	0											4,2						-2,9
6	0		0	-1(0	0	-4	10= Very hig	10= Wł	ole		3,6				1		-2,6
7 8	0		4	4		0	4	8= High,	catchme			-1,6						0,2 -1,9
9	0		-3	-8		0	2	6= Moderat	e, 6= Reach drainag					ficult -10	Effect if			
-			0	0		0	0	4= Low,	3= Sectio		р	-2,1		sy 10	implemented			-2,4
10 11	0		0			0	2	2= Minor, 0= Status qu	drainag									-3,4 -1,6
11	0		. 0			U	2	0- Status qu	0= Only loo	ation	_	-0,2						-0,9
			-3			0	2	10	6			7,6		10	10	2,2		
	~		4	5		0	2	8	3			4,3		-5	5	3,2	1	
	R							10	10			-1,7		-5	10	6		
	\ (0	0		0	0	0	0		-	-2,9		0	0	0	-	
			0	0		0	0	6	6			5,8		-5	5	1,4		
			4	0		0	2		Ű			4,4		2	J J	±,+		
		6			rat	chi	ndi	10	6			5		-8	8	4,2		
l yu				C	コし	tchi	こし	8	6		-		5		5	6,8		
								6	6			-5		0	8	3	-	
								3			5		-7	5	2			
as catchment. R						4	4			0		-5	6	1,8	-			
							8	<u> </u>			5		10 8	5	6,8 5,8	-		

- Present Ecological State (PES) and Ecological Importance and Sensitivity (EIS) calculated.
- Most of the aquatic ecosystems of the study site scored a PES of D or lower, 7 out of 32 aquatic ecosystems had a PES above D.

DESCRIPTION	IMPACT SCORE RANGE	HEALTH CATEGORY		
Unmodified/ natural	0-0.9	Α		
Largely natural with few modifications. A slight change in ecosystem processes is discernible and a small losp of natural habitats and biota may have taken place.	1-1.9	в		
Moderately modified. A moderate change in ecosystem processes and loss of natural habitats has taken place but the natural habitat remains predominantly intact	2-3.9	с		
Largely modified. A large change in ecosystem processes and loss of natural habitat and biota and has occurred.	4-5.9	D		
The change in ecosystem processes and loss of natural habitat and biota is great but some remaining natural habitat features are still recognizable.	6-7.9	E		
Modifications have reached a critical level and the ecosystem processes have been modifiedcompletely with an almost complete loss of natural habitat and biota.	8 – 10	F		

Elsburgspruit Present Ecological Scores

Elsburgspruit Ecological Importance Scores

List of Interventions for Elsburgspruit

- Intervention 1: Reinstatement of the dam wall at Reiger Park
- Intervention 2: Wetland Chanel Rehabilitation
- Intervention 3: Establish Municipal Reserve Area
- Intervention 4: Phytoremediation of an agricultural dam.
- Intervention 5: Repair hydrological drivers
- Intervention 6: Increase attenuation footprint
- Intervention 7: Boksburg Lake: Increase phytoremediation by introduction of floating wetlands
- Intervention 8: Removal of crossing
- Intervention 9: Reduce seep from tailings facilities
- Intervention 10: Remove hydrological pinch point old structures and their abutments should be demolished.
- Intervention 11: Germiston / Victoria Lakes Increase phytoremediation by the introduction of floating wetlands

Interventions

- Key interventions were developed to facilitate *catchment scale* changes.
- Smaller interventions are proposed, based on available budget, but still have an impact on the overall PES condition of the catchment.
- Goal: Catchment is to increase the PES from an average of "D" or "C" average
- Objectives:
 - Ensure that the aquatic ecosystem functioning is improved
 - Restore the natural vegetation of the impacted areas,
 - Use structures to have an improvement on condition of system
- Study identified 11 key interventions required within the Elsburgspruit Catchment as well as a number of generic interventions
- Of the 11 interventions, 3 were not investigated further due to financial constraints or legality of ownership

Dam wall reinstate 12 increased phytoremediation 12 increased phytoremediation

10 hydrological pinch point 9 reduced seep from tailings

Establishment of Municipal reserve/ conservation area

11 increase phytoremediation Review of activities

Google Earth

mage @ 2018 DigitalGlobe

9 km

Generic Interventions

- Establishment of Catchment Management Committee
- Addressing sewer spillages/blocking of sewers
- Inefficient functioning of from ERWAT treatment plants
- Removal of litter from wetlands
- Improving the way storm water reaches wetland/river system
- Removal of alien an invasive species
- Providing formal pedestrian crossings
- Installing of Weirs/ Steps to slow stream flow
- Providing formal open space / beatification
- Developing catchment monitoring plans

Composite Plan

Scale 1:40 000 on A3

Intervention 2: Wetland Channel Rehabilitation- Parkdene/ Reiger Park

Intervention 3: Establish municipal reserve area- Elspark

Intervention 5: Repair Hydrological drivers- Parkrand

Intervention 6: Increase attenuation footprint- Boksburg

Scale 1:5000 on A3

Intervention 6: Upstream channel weir detail- Boksburg

Blesbokspruit Catchment

- Blesbokspruit was on the RAMSAR list and currently (2019) on the Montreux record.
- Value of wetland demonstrated by water quality parameters results
- Major impacts:
 - Crossings (Formal & Informal Roads, Railway)
 - Sewer spills
 - Illegal mining activities
 - Encroachment into buffer and wetland
 - AMD

Blesbokspruit Total Coliforms

Oligotrophic conditions; usually moderate levels of species diversity; usually low productivity systems with rapid nutrient cycling; no nuisance growth of aquatic plants or blue-green algae.

Mesotrophic conditions; usually high levels of species diversity; usually productive systems; nuisance growth of aquatic plants and blooms of blue-green algae; algal blooms seldom toxic.

Eutrophic conditions; usually low levels of species diversity; usually highly productive systems, with nuisance growth of aquatic plants and blooms of blue green algae; algal blooms may include species which are toxic to man, livestock and wildlife.

Hypertrophic conditions; usually very low levels of species diversity; usually very highly productive systems; nuisance growth of aquatic plants and blooms of blue-green algae, often including species which are toxic to man, livestock and wildlife.

Blesbok Spruit – Phosphates

Upper Blesbokspruit Problem Sites: Google Earth Placemarks

Upper Blesbokspruit Problem Sites: E1 Erosion on downstream side of culverts + flooding

Upper Blesbokspruit Problem Sites: E3 Overflowing springs in school yard, classrooms + reeds

Upper Blesbokspruit Problem Sites: E5 Flooding, illegal dumping + clogged SW outlet

Lesson learned

- Interdepartmental interaction, input and commitment is essential
- Public Participation allows communities to understand the scientific issues and to provide input, BUT it also exposes a lot which is not been done by Municipalities
- Public do have some unrealistic expectations
- Consultative planning process help with environmental education and protection of buffers and wetlands
- Smaller interventions could have large scale impacts
- A range of interventions allow for smaller and larger projects to follow, based on available budget
- Master Plan provide bases to decisions and propoer management

"Clearly the problem of <u>man</u> and <u>nature</u> is not one of providing a **decorative background** for **human play**, or even ameliorating the **grim city**: it is the necessity of **sustaining** nature as **source of life**, **milieu teacher**, **sanctum**, **challenge** and, most of all of **rediscovering** nature's corollary of the **unknown** in **self**, the **source of meaning**."

IAN MCHARG, Design with Nature