Carbon Sequestration of Trees in Orlando West Park and Chris Hani Street, Soweto South Africa

Define tomorrow.

SOUTH AFRICA

JNIV/FRSI

Ms EM van Staden

Prof GH Stoffberg

Contents

- Project Background ¬
- Pilot Sites
- Research Aim
- Methodology
- Results and Discussion -
- Recommendations
- Concluding Remarks
- The Way Forward

Prof Hennie Stoffberg

Elize van Staden

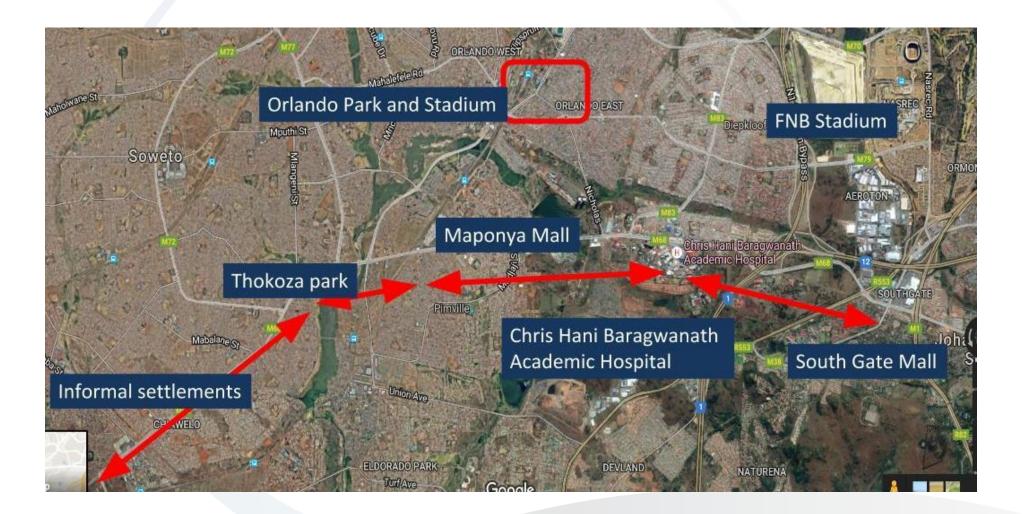
Project Background

&

a world class African city

Project Background

Valuing the urban forest as a green asset and a green infrastructure component to enable the quantification of its monetary value, to enable the motivation for preservation, maintenance and increase in capital and operational expenses


Project Background

- Estimated **220000** trees planted during the run-up and after to the **2010 FIFA World Cup**
- The project became known as the "Mayoral Greening of Soweto Project"
- UNISA is tasked to determine the carbon storage of the trees planted.
- It was decided to use Chris Hani Street and Orlando West Park in Soweto as the pilot sample sites.

Pilot Sites

Pilot Sites – location of sites

Pilot Sites

ORLANDO WEST PARK

- Greening Soweto 2010
 Legacy Project
- Estimated: 37 500 m²
- 498 indigenous trees
- Small shrub bed
- Grass mixture of Kikuyu and *Cynodon spp.*
- Designed by INSITE
 Group Landscape
 Architects

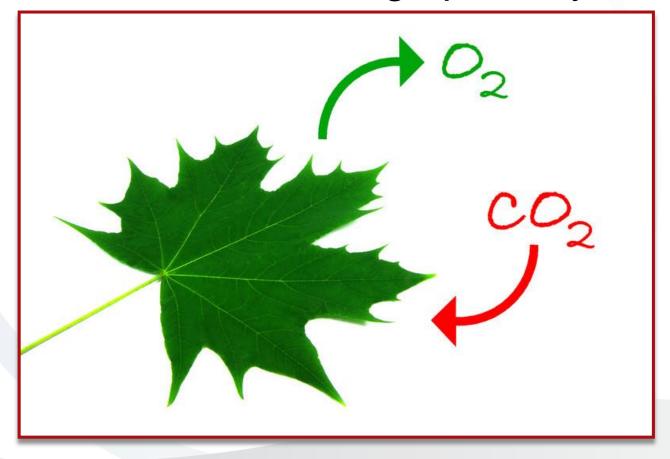
Pilot Sites

CHRIS HANI STREET

- Main arterial route (8.2km)
- 2246 street trees
- Diverse adjacent land
 uses
- Entire street is divided by a wide median

Research Aim

Estimate the standing carbon stocks


 – carbon stored in the trees as at date of fieldwork measurement (2016)

 Determine the projected carbon sequestration

statistically project the estimated carbon
 sequestrated over a 30 and 45 year period

Research Aim: Why carbon?

• Trees store carbon through photosynthesis

Research Aim: Why carbon?

 Carbon sink: Accumulation and storing of carbon compounds.

 Carbon Sequestration: Process by which carbon sinks remove carbon dioxide (CO₂)
 from the atmosphere (Intergovernmental Panel on Climate Change, 2000).

Research Aim: Why carbon? The estimation of carbon storage and sequestration can provide information which can be used to help assess the actual and potential role of urban forests in reducing atmospheric CO₂ (Nowak et al., 2013).

How does this work?

- Higher CO₂ levels = higher temperature on earth
- Remove **CO**₂ from the atmosphere.
- Mitigation of global warming (Nowak & Crane, 2002)

Methodology - Data Collection

ORLANDO WEST PARK

- Total trees: 498
- Conducted a complete tree inventory

Methodology - Data Collection

ORLANDO WEST PARK

- Total trees: 498
- Conducted a
 complete tree
 inventory

CHRIS HANI STREET

- Total trees: 2246
- Conducted a random and representative tree sample
- Sampled 20% of total number of street trees
- Inventory 450 trees

Methodology – Data collection

Indigenous trees:

Stem circumference measurements were taken at ground level

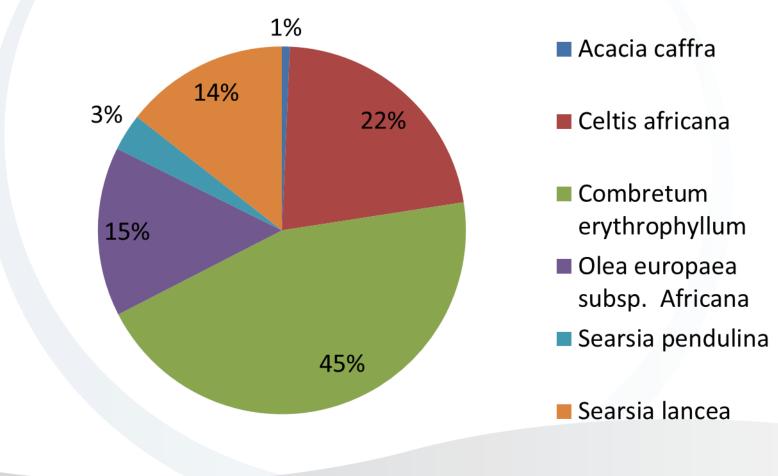
Methodology – Data collection

Indigenous trees: Stem circumference measurements at ground level

Exotic trees: Stem circumference measurements were taken at Breast Height (DBH measurements)

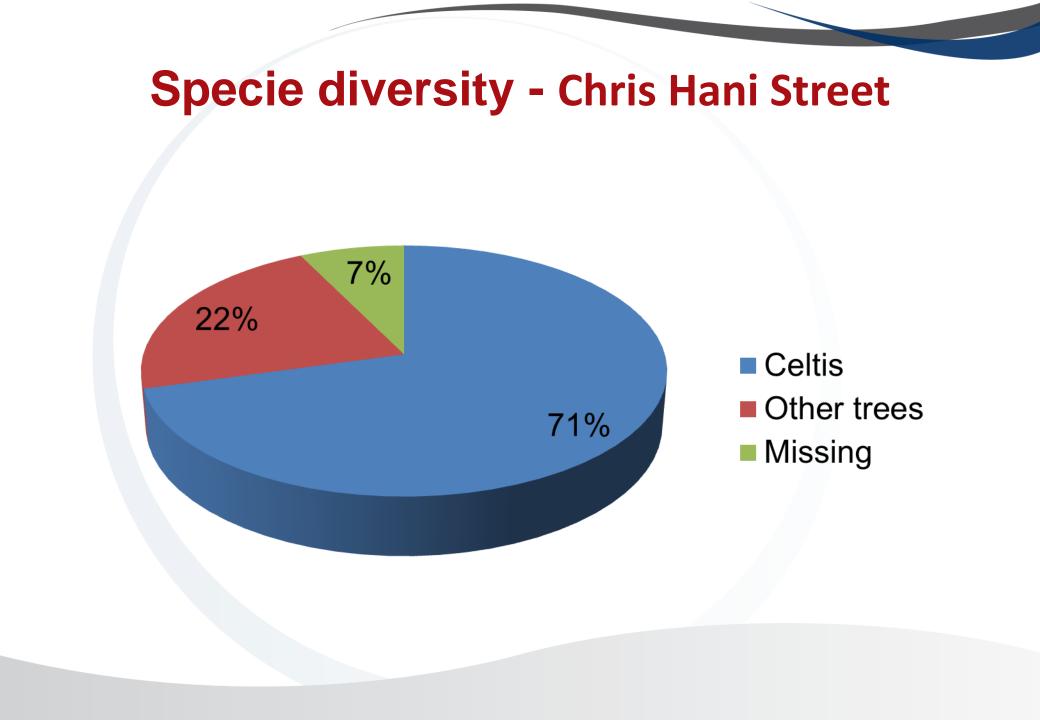
Methodology – Data collection

Specie diversity - Orlando West Park

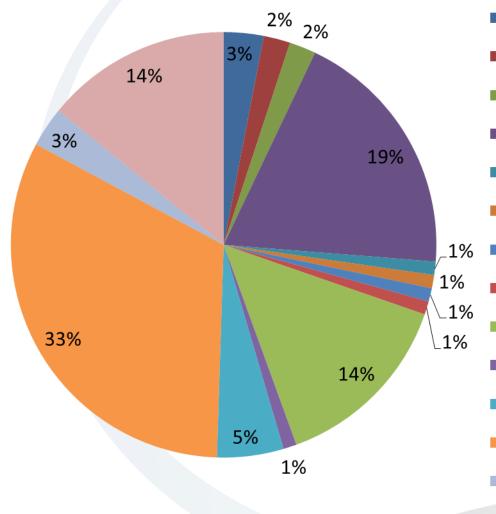

Species	Number of	Percentage of
	trees*	trees
Acacia caffra	3	0.7
Celtis africana	94	21.9
Combretum erythrophyllum	193	44.9
Olea europaea subsp. Africana	64	14.9
Searsia pendulina	14	3.3
Searsia lancea	62	14.4
Total	449	100

*Note: Missing trees not included: 19 unknown

Dead stumps /Coppice growth only not included: 49


Specie diversity - Orlando West Park

Specie diversity in percentage



Smallest & largest trees

Plant name	DGL (mm)		
	Smallest	Largest	
	Celtis africana	54	300
	Acacia caffra	185	245
	Olea europea subsp Africana	43	161
	Combretum erythrophyllum	15	322
	Searsia lancea	87	281
	Searsia pendulina	86	204

Specie diversity - Chris Hani Street

- Acacia caffra
- Acer buergerianum
 Brachychiton acerifolia
 Combretum erythrophyllum
 Fraxinus americana
 Jacaranda mimosifolia
 Melia azedarach
- Morus alba
- Olea europaea
- Saphora japonica
- Searsia pendulina
- Searsia lancea
- Syagrus romansoffianum
- Ulmus parvifolia

Smallest & largest trees

	DGL (mm)	
Plant name	Smallest	Largest
Celtis africana	27	428
Acacia caffra	37	291
Olea europea subsp Africana	62	190
Combretum erythrophyllum	75	447
Searsia lancea	156	425
Searsia pendulina	181	379

Methodology - Estimate carbon storage and sequestration approach

- Indigenous trees only
- Standing Carbon Stock

Statistically Projected Carbon Sequestration

Carbon storage and sequestration

 Carbon calculations are based on the whole tree biomass estimates (below and above ground biomass).

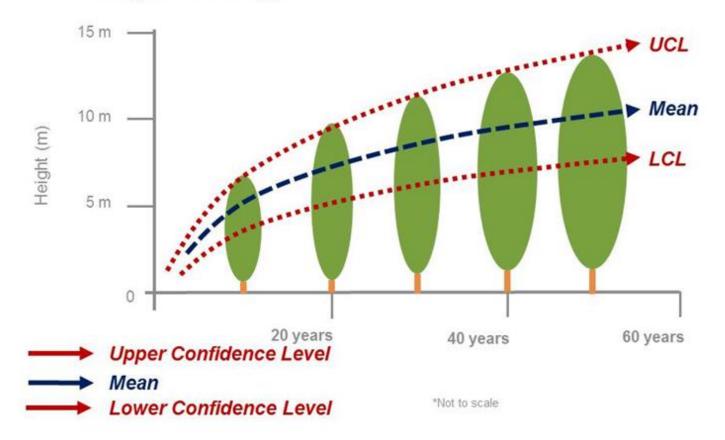
 Methodology presented by Stoffberg et al 2004 and 2010 used stem circumference at ground level.

Carbon storage and sequestration

• All carbon values are presented as both Carbon and Carbon Dioxide values.

 The conversion to carbon dioxide is necessary to determine the greenhouse gas (CO₂) removal impacts that the trees attain through plant growth.

Carbon storage and sequestration


• Results presented:

Lower, Mean and Upper confidence levels (at 95%)

Forecasted Growth Rates over a period of time

Lower, Mean and Upper confidence levels

Statistical Growth Rates: 95% Confidence Levels Tree height - tree age

Potential projected carbon sequestration

30 years	45 years
Acacia caffra	Celtis africana
Olea europaea subsp	Combretum
Africana	erythrophyllum
Searsia pendulina	
Searsia lancea	

South African Rand Value

South African Rand Value

Value of the Carbon Dioxide in a local context and common denominator for comparable purposes.

- Carbon tax ZAR120.00
- Formerly proposed by National Treasury

(Department: National Treasury, 2013)

Potential projected carbon sequestration

Tree based, time and growth rate relationships enable the creation of carbon sequestration regression equations which allowed for the calculation of estimated projected (future growth) carbon sequestration by the indigenous trees.

Summary

• Hennie Stoffberg will present the results

a world class African city

Thank you

Define tomorrow.

