

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD

Tree Canopy Project

The Institute of Environment and Recreation Management

September 2022

Making progress possible. Together.

Agenda

- Welcome and Introduction
- Project Background
- Project Methodology
- Lessons Learned

- Recommendations For Action
- Future Considerations

Legend Tree Canopy Cover Tesselation

Project Background

Project Background

- Requirement to map tree canopies across the City of Cape Town
- Fieldwork at metro scale would be too labour intensive & costly, hence an automated solution was required
- Use of remote sensing techniques & GIS to create a tree canopy dataset

Project Methodology

Project Methodology

- Remote Sensing CIR to map tree canopies, capture polygons
- Apply height mask to remove non-tree features
- Smoothing technique to give the tree canopy polygons a natural look
- Split data into manageable grids
- Edge-match & digitize undesirable features in GIS
- GIS layer and database
- Final edits & summary statistics

Colour Infrared Image

Generate polygons (canopy shape)

Apply a height mask (removes anything <2.75m – shrubs, bushes etc.)

Lessons Learned

Lessons Learned

- Amount of canopies (>3 million) = Big Data
- Many challengers across all phases of project due to the nature of the data
- High error output with the automation
- Refine data design:
 - Better ways to share the data
 - Naming convention
 - Add more information to each canopy

Common Errors

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD

Size of Canopies

- Over 30 000

 canopies were <
 square metre –
 All deleted
- Seen as 'gremlins' in the dataset

- Largest polygon ~8 square kilometres
- Difficult to edit due to the size of the polygon

Recommendations For Action

Recommendations

- Need to anticipate Big Data
- Look at different imagery, cheaper alternatives
- Consider:
 - High detail = Slow performance
 - Longer processing time
 - Large dataset
 - Lower detail = Better performance
 - Quicker processing time
 - Smaller dataset
- Clean up City boundary first
- Merge features to reduce records

Future Considerations

Future Considerations

- Follow up study (5 10 year interval)
- 2018 Western Cape drought = Less canopy coverage
- Current dataset as a foundation:
 - Review tree planting initiatives
 - Compare suburbs of similar size
- Target field verification :
 - Identify trees affected by Polyphagous Shot Hole Borer
 - Tree vitality, Species, Height
- Various analysis
 - Heat maps to analyse carbon sequestration

Suburb Comparisons

Various Outputs

- Different outputs to show the data
- Raster ECW image
- Each pixel = tree canopy density
- Pixelated when zoomed in

CITY OF CAPE TOWN ISIXEKO SASEKAPA STAD KAAPSTAD

Thank You

Any enquiries contact Ziyaad.Lalla@capetown.gov.za

Making progress possible. Together.