

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Faculty of Natural and Agricultural Sciences

Fakulteit Natuur- en Landbouwetenskappe Lefapha la Disaense tša Tlhago le Temo

ON CEMETERIES, THEIR SITING AND HYDROLOGICAL IMPACTS

IERM – 28 September 2015 Matthys Dippenaar, Department Geology

Outline

- RISKS POSED BY CEMETERIES
- HYDROLOGICAL PROCESSES
- MINIMUM REQUIREMENTS
- PRESENT INVESTIGATION PROCEDURES
- MITIGATING RISK FROM CEMETERIES
- VADOSE ZONE ASSESSMENT PROTOCOL
- THE WAY FORWARD...

- Generally low due to:
 - Slow decay process
 - Short lifespan of bacteria outside of human body
 - Alternative reticulated water supply
 - More significant contamination sources
 - Slightly contaminated water can be used for e.g. irrigation

- However, mandatory EIA as poorly sited cemeteries can result in:
 - Short-term impacts (flies, noise, air pollution)
 - Long-term impacts (water pollution)
- Registered water use in terms of:
 - Section 21 of the National Water Act 36 of 1999

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

SPECIFIC VULNERABILITY

Risk exacerbated by specific contaminant:

- Contaminant properties/ toxicity
- Manner of contaminant disposition
- Persistence, bioaccumulation

INTRINSIC VULNERABILITY

ATMOSPHERE AND LAND SURFACE Likelihood of infiltration:

- Precipitation (intensity/duration)
- Topography/ slope
- Land use/ land cover

VADOSE ZONE Likelihood of recharge:

- Distance (depth to water)
- Flow rate (K_{unsat})
- Confining layers
- PHREATIC ZONE Impact on aquifer:
 - Recharge rate
- Aquifer media

- Contaminants sourced from:
 - Decaying bodies
 - Materials associated with burial (e.g. coffins)
 - Landscaping practice
- Alternating saturated—unsaturated periods:
 - Alternating anaerobic—aerobic conditions

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

2015-10-01

Hydrological processes

- Distinct hydrological interaction scenarios:
 - a) Gaining stream
 - b) Losing stream
 - c) Thick vadose zone

Hydrological processes

Duplex soils and grass veldt

Precipitation; almost barren surface

Minimum requirements

UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Present investigation procedures

- Engineering geological/ geotechnical:
 - Excavatability ease to > 1.80 m
 - Stability sidewalls stable for prolonged periods
 - Workability material to be used as compacted backfill
- Sanitary/ environmental/ hydrogeological:
 - Water table thickness of protective vadose zone
 - Subsoil permeability preventing ponding & rapid infiltration
 - Backfill permeability as above
- (Hall & Hanbury 1990)

Present investigation procedures

- Numerous dated other approaches require proving, by any means required, the following:
 - Deep water table
 - Absence of perched water tables
 - Soil conductivity 1 x 10⁻⁷ 5 x 10⁻⁵ cm/s
 - Thick excavatable soils
 - No proximate water supply or drainage features
 - Stability of sidewalls
 - Surface gradient 2 6° (9° in exceptional cases)
 - Space for adequate future expansion

- Risk is mitigated through
 - Proper siting (investigation prior to development)
 - Proper monitoring
 - Proper management
- Tiered multi-faceted Vadose Zone Assessment Protocol incorporates
 - Stages of investigation based on risk
 - Multi-environmental approach

- A1. Data Collation
 - Geological and soil maps; climatic data; existing water quality data; historical reports
- A2. Assessment of Proposed Development and Associated Risks
- A3. Hydrological Pathways of Importance
 - I.e. is water required to be available to plants; is groundwater recharge and aquifer vulnerability the main concern; is water expected to influence infrastructure?

- B1. Detailed Surface Mapping
 - Outcropping rock, surface soils, land cover, land use, vegetation, drainage, topography)
- B2. Relative Hydrological Risk Mapping
 - Contaminant sources, water table map, water users, surface drainage)

- C1. Surface Water Assessment
 - Detailed drainage; surface water quality)
- C2. Soil Zone Assessment
 - Characterisation of the shallow subsurface through existing methods such as soil profiling, infiltration testing, percolation testing, grading and hydrometer analyses, etc.)
- C3. Geotechnical Assessment
 - Excavatability; sidewall stability; geological hazards)

- Hydrocensus; drilling and aquifer testing if required; groundwater quality)
- D2. Intermediate Vadose Zone Assessment
 - Conceptualisation of deep soil and unsaturated bedrock conditions; drilling, augering or push probe if required)

- E1. Hydrological Model
 - Including all additional data requirements and if required

The way forward...

- Commissioned by Water Research Commission:
 - State-of-the-Art Cemetery Guidelines
- Incorporating aspects of:
 - Sanitation and Hydrology
 - Human and Ecosystem Health
 - Engineering Constraints
 - Social Aspects

The way forward...

- Project Team:
 - Dr Dippenaar, UP (Engineering Geology, Hydrogeology, Vadose Zone Hydrology)
 - Prof Lorentz, UKZN/SRK (Vadose Zone Hydrology, Hydrology)
 - Prof Olivier, UP (Geography, Climatology)
 - Dr Ubomba-Jaswa, CSIR (Microbiology, Health)
- Capacity Building
 - Ms Aphane, Janse van Rensburg, Mahlangu and Mpye
 - Mr Brouwers

The way forward...

- Standard guidelines
 - Aquifer vulnerability
 - Surface hydrology
 - Vadose zone, esp. impacts of backfill and underlying strata
- Monitoring
- Case studies have since commenced
 - To offer your sites-of-concern kindly email me
 - madip@up.ac.za

Bibliography

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

- Provisional updated guidelines
 - Dippenaar, Van Rooy et al. (2014). Vadose Zone Hydrology: Concepts and Techniques. Water Research Commission. TT 584/13. Pretoria (free of charge: <u>www.wrc.org.za/</u> <u>orders@wrc.org.za</u>)
 - Dippenaar, M. A. (2014). Towards a multi-faceted vadose zone assessment protocol: cemetery guidelines and application to a burial site located near a seasonal wetland (Pretoria, South Africa). Bulletin of Engineering Geology and the Environment. 73(4):1105-1115.

Vadose Zone Hydrology: CONCEPTS AND TECHNIQUES

MA Dippenaar, JL van Rooy, N Breedt, A Huisamen, SE Muravha, S Mahlangu & JA Mulders

Bibliography

- Croucamp, L., & Richards, N. (2002). Guidelines for Cemetery Site Selection. Council for Geoscience. Pretoria.
- DEAT [Department of Environmental Affairs and Tourism]. (1989). Environmental Conservation Act No 73. Government Printer. Pretoria.
- Dent, B. B. and Knight, M. J. (1998). Cemeteries: a Special Kind of Landfill. The Context of their Sustainable Management.. Proceedings: Groundwater: Sustainable Solutions (International Association of Hydrogeologists, Melbourne, February 1998):451-456.
- DWA [Department of Water Affairs]. (1998). National Water Act No 36. Government Printer. Pretoria.
- DWA [Department of Water Affairs]. (Retrieved 2010). Water Quality Management Policy with regard to the Management of and Control over Cemeteries as a Source of Water Pollution. Document number: GraveR. Available on the Internet at <u>http://www.dwaf.gov.za/Documents/Policies/WDD/Cemetery.pdf</u>. 2 pages.
- EA [Environmental Agency]: Science Group Air, Land & Water. (2004). Assessing the Groundwater Pollution Potential of Cemetery Developments. Product Code SCH00404BGLA-E-P. Environmental Agency. Bristol. 24 pages.
- Engelbrecht, J. (2000). Goundwater Pollution for Cemeteries. CSIR. Pretoria.
- Fisher, G. (1992). Selection Criteria for the Placing of Cemetery Sites. Geological Survey of South Africa. Johannesburg.
- Fisher, G. J. (1994). The Selection of Cemetery Sites in South Africa. Proceedings: 4th Terrain Evaluation and Data Storage Symposium. Midrand.
- Fisher, G., & Croucamp, L. (1993). Groundwater Contamination and its Consequences resulting from the Indiscriminate Placing of Cemeteries in Third World Context. Vol 1: Africa needs Groundwater Convention. (Vol. 1). Johannesburg.
- Hall, B. H. and Hanbury, R. (1990). Some Geotechnical Considerations in the Selection of Cemetery Sites. IMIESA March 1990: 2125
- NIEA [Northern Ireland Environment Agency]. (downloaded 2012). Cemeteries, Burials & the Water Environment: Guidance Notes. Available on the Internet at <u>www.ni-environment.gov.uk</u>. 12 pages.
- WHO [World Health Organisation]: Regional Office for Europe. (1996). The Impact of Cemeteries on the Environment and Public Health: an Introductory Briefing. Document EUR/HFA target 23. World Health Organisation. Copenhagen.
- Young, C. P., Blackmore, K. M., Reynolds, P. and Leavens, A. (2002). Pollution Potential of Cemeteries: Draft Guidance. R&D Technical Report P223. Environmental Agency. Bristol. 71 pages.